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UNIT-I 

INTRODUCTION 

A control system manages commands, directs or regulates the behavior of other devices or 

systems using control loops. It can range from a single home heating controller using 

a thermostat controlling a domestic boiler to large Industrial control systems which are used 

for controlling processes or machines. A control system is a system, which provides the 

desired response by controlling the output. The following figure shows the simple block 

diagram of a control system. 
 

 

Examples − Traffic lights control system, washing machine 

Traffic lights control system is an example of control system. Here, a sequence of input 

signal is applied to this control system and the output is one of the three lights that will be 

on for some duration of time. During this time, the other two lights will be off. Based on the 

traffic study at a particular junction, the on and off times of the lights can be determined. 

Accordingly, the input signal controls the output. So, the traffic lights control system 

operates on time basis. 

Classification of Control Systems 

Based on some parameters, we can classify the control systems into the following ways. 

Continuous time and Discrete-time Control Systems 

 Control Systems can be classified as continuous time control systems and discrete 

time control systems based on the type of the signal used.

 In continuous time control systems, all the signals are continuous in time. But, 

in discrete time control systems, there exists one or more discrete time signals.

SISO and MIMO Control Systems 

 Control Systems can be classified as SISO control systems and MIMO control systems 

based on the number of inputs and outputs presen

https://en.wikipedia.org/wiki/Control_loop
https://en.wikipedia.org/wiki/Thermostat
https://en.wikipedia.org/wiki/Industrial_control_system
https://en.wikipedia.org/wiki/Process_(engineering)
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Open Loop and Closed Loop Control Systems 

Control Systems can be classified as open loop control systems and closed loop control 

systems based on the feedback path. 

In open loop control systems, output is not fed-back to the input. So, the control action is 

independent of the desired output. 

The following figure shows the block diagram of the open loop control system. 

 

 

Here, an input is applied to a controller and it produces an actuating signal or controlling 

signal. This signal is given as an input to a plant or process which is to be controlled. So, the 

plant produces an output, which is controlled. The traffic lights control system which we 

discussed earlier is an example of an open loop control system. 

In closed loop control systems, output is fed back to the input. So, the control action is 

dependent on the desired output. 

The following figure shows the block diagram of negative feedback closed loop control 

system. 

The error detector produces an error signal, which is the difference between the input and 

the feedback signal. This feedback signal is obtained from the block (feedback elements) by 

considering the output of the overall system as an input to this block. Instead of the direct 

input, the error signal is applied as an input to a controller. 
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So, the controller produces an actuating signal which controls the plant. In this combination, 

the output of the control system is adjusted automatically till we get the desired response. 

Hence, the closed loop control systems are also called the automatic control systems. Traffic 

lights control system having sensor at the input is an example of a closed loop control system. 

The differences between the open loop and the closed loop control systems are mentioned 

in the following table. 
 

 

If either the output or some part of the output is returned to the input side and utilized as 

part of the system input, then it is known as feedback. Feedback plays an important role in 

order to improve the performance of the control systems. In this chapter, let us discuss the 

types of feedback & effects of feedback. 

Types of Feedback 

There are two types of feedback − 

 
 Positive feedback

 Negative feedback

Positive Feedback 

The positive feedback adds the reference input, R(s)R(s) and feedback output. The following 

figure shows the block diagram of positive feedback control system 
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The concept of transfer function will be discussed in later chapters. For the time being, 

consider the transfer function of positive feedback control system is, 

 
Where, 

 T is the transfer function or overall gain of positive feedback control system.

 G is the open loop gain, which is function of frequency.

 H is the gain of feedback path, which is function of frequency.

 

Negative Feedback 

Negative feedback reduces the error between the reference input, R(s)R(s) and system 

output. The following figure shows the block diagram of the negative feedback control 

system. 

 
a 

 
Transfer function of negative feedback control system is, 
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Where, 

 T is the transfer function or overall gain of negative feedback control system.

 G is the open loop gain, which is function of frequency.

 H is the gain of feedback path, which is function of frequency.

The derivation of the above transfer function is present in later chapters. 

Effects of Feedback 

Let us now understand the effects of feedback. 

Effect of Feedback on Overall Gain 

 From Equation 2, we can say that the overall gain of negative feedback closed loop 

control system is the ratio of 'G' and (1+GH). So, the overall gain may increase or 

decrease depending on the value of (1+GH).

 If the value of (1+GH) is less than 1, then the overall gain increases. In this case, 'GH' 

value is negative because the gain of the feedback path is negative.

 If the value of (1+GH) is greater than 1, then the overall gain decreases. In this case, 

'GH' value is positive because the gain of the feedback path is positive.

In general, 'G' and 'H' are functions of frequency. So, the feedback will increase the overall 

gain of the system in one frequency range and decrease in the other frequency range. 

Effect of Feedback on Sensitivity 

Sensitivity of the overall gain of negative feedback closed loop control system (T) to the 

variation in open loop gain (G) is defined as 
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So, we got the sensitivity of the overall gain of closed loop control system as the reciprocal 

of (1+GH). So, Sensitivity may increase or decrease depending on the value of (1+GH). 

 If the value of (1+GH) is less than 1, then sensitivity increases. In this case, 'GH' value 

is negative because the gain of feedback path is negative.

 If the value of (1+GH) is greater than 1, then sensitivity decreases. In this case, 'GH' 

value is positive because the gain of feedback path is positive.

In general, 'G' and 'H' are functions of frequency. So, feedback will increase the sensitivity of 

the system gain in one frequency range and decrease in the other frequency range. 

Therefore, we have to choose the values of 'GH' in such a way that the system is insensitive 

or less sensitive to parameter variations. 

Effect of Feedback on Stability 

 A system is said to be stable, if its output is under control. Otherwise, it is said to be 

unstable.

 In Equation 2, if the denominator value is zero (i.e., GH = -1), then the output of the 

control system will be infinite. So, the control system becomes unstable.

Therefore, we have to properly choose the feedback in order to make the control system 

stable. 

Effect of Feedback on Noise 

To know the effect of feedback on noise, let us compare the transfer function relations with 

and without feedback due to noise signal alone. 

Consider an open loop control system with noise signal as shown below. 
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The control systems can be represented with a set of mathematical equations known 

as mathematical model. These models are useful for analysis and design of control systems. 

Analysis of control system means finding the output when we know the input and 
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mathematical model. Design of control system means finding the mathematical model when 

we know the input and the output. 

The following mathematical models are mostly used. 

 
 Differential equation model

 Transfer function model

 State space model
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TRANSFER FUNCTION REPRESENTATION 
 

Block Diagrams 

Block diagrams consist of a single block or a combination of blocks. These are used to 

represent the control systems in pictorial form. 

Basic Elementsof Block Diagram 

The basic elements of a block diagram are a block, the summing point and the take-off point. 

Let us consider the block diagram of a closed loop control system as shown in the following 

figure to identify these elements. 

 
The above block diagram consists of two blocks having transfer functions G(s) and H(s). It is 

also having one summing point and one take-off point. Arrows indicate the direction of the 

flow of signals. Let us now discuss these elements one by one. 

Block 

The transfer function of a component is represented by a block. Block has single input and 

single output. 

The following figure shows a block having input X(s), output Y(s) and the transfer function 

G(s). 
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Summing Point 

The summing point is represented with a circle having cross (X) inside it. It has two or more 

inputs and single output. It produces the algebraic sum of the inputs. It also performs the 

summation or subtraction or combination of summation and subtraction of the inputs based 

on the polarity of the inputs. Let us see these three operations one by one. 

The following figure shows the summing point with two inputs (A, B) and one output (Y).  

Here, the inputs A and B have a positive sign. So, the summing point produces the output, Y 

as sum of A and B i.e. = A + B. 

The following figure shows the summing point with two inputs (A, B) and one output (Y). 

Here, the inputs A and B are having opposite signs, i.e., A is having positive sign and B is 

having negative sign. So, the summing point produces the output Y as the difference of A 

and B i.e 

Y = A + (-B) = A - B. 
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The following figure shows the summing point with three inputs (A, B, C) and one output (Y). 

Here, the inputs A and B are having positive signs and C is having a negative sign. So, the 

summing point produces the output Y as 

Y = A + B + (−C) = A + B − C. 
 

Take-off Point 

The take-off point is a point from which the same input signal can be passed through more 

than one branch. That means with the help of take-off point, we can apply the same input 

to one or more blocks, summing points.In the following figure, the take-off point is used to 

connect the same input, R(s) to two more blocks. 
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In the following figure, the take-off point is used to connect the output C(s), as one of the 

inputs to the summing point. 

 

 
Block diagram algebra is nothing but the algebra involved with the basic elements of the 

block diagram. This algebra deals with the pictorial representation of algebraic equations. 

Basic Connections for Blocks 

There are three basic types of connections between two blocks. 

Series Connection 

Series connection is also called cascade connection. In the following figure, two blocks 

having transfer functions G1(s)G1(s) and G2(s)G2(s) are connected in series. 
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That means we can represent the series connection of two blocks with a single block. The 

transfer function of this single block is the product of the transfer functions of those two 

blocks. The equivalent block diagram is shown below. 

 
 

 
 

Similarly, you can represent series connection of ‘n’ blocks with a single block. The transfer 

function of this single block is the product of the transfer functions of all those ‘n’ blocks. 

Parallel Connection 

The blocks which are connected in parallel will have the same input. In the following figure, 

two blocks having transfer functions G1(s)G1(s) and G2(s)G2(s) are connected in parallel. 

The outputs of these two blocks are connected to the summing point. 

 

 

 

 

That means we can represent the parallel connection of two blocks with a single block. The 

transfer function of this single block is the sum of the transfer functions of those two blocks. 

The equivalent block diagram is shown below. 
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Similarly, you can represent parallel connection of ‘n’ blocks with a single block. The transfer 

function of this single block is the algebraic sum of the transfer functions of all those ‘n’ 

blocks. 

Feedback Connection 

As we discussed in previous chapters, there are two types of feedback — positive feedback 

and negative feedback. The following figure shows negative feedback control system. Here, 

two blocks having transfer functions G(s)G(s) and H(s)H(s) form a closed loop. 

 
 

Therefore, the negative feedback closed loop transfer function is : 

 

This means we can represent the negative feedback connection of two blocks with a single 

block. The transfer function of this single block is the closed loop transfer function of the 

negative feedback. The equivalent block diagram is shown below. 
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Similarly, you can represent the positive feedback connection of two blocks with a single 

block. The transfer function of this single block is the closed loop transfer function of the 

positive feedback, i.e., 
 

 

Block Diagram Algebra for Summing Points 

There are two possibilities of shifting summing points with respect to blocks − 

 
 Shifting summing point after the block

 Shifting summing point before the block

Let us now see what kind of arrangements need to be done in the above two cases one by 

one. 

Shifting the Summing Point before a Block to after a Block 

Consider the block diagram shown in the following figure. Here, the summing point is present 

before the block. 
 

 
 
 

 

The output of Summing point is 
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Compare Equation 1 and Equation 2. 

The first term ‘G(s)R(s)′‘G(s)R(s)′ is same in both the equations. But, there is difference in the 

second term. In order to get the second term also same, we require one more block G(s)G(s). 

It is having the input X(s)X(s) and the output of this block is given as input to summing point 

instead of X(s)X(s). This block diagram is shown in the following figure. 
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Compare Equation 3 and Equation 4, 

The first term ‘G(s)R(s)′ is same in both equations. But, there is difference in the second term. 

In order to get the second term also same, we require one more block 1/G(s). It is having the 
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input X(s) and the output of this block is given as input to summing point instead of X(s). This 

block diagram is shown in the following figure. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Block Diagram Algebra for Take-off Points 

There are two possibilities of shifting the take-off points with respect to blocks − 

 
 Shifting take-off point after the block

 Shifting take-off point before the block

Let us now see what kind of arrangements is to be done in the above two cases, one by one. 

Shifting a Take-off Point form a Position before a Block to a position after the Block 

Consider the block diagram shown in the following figure. In this case, the take-off point is 

present before the block. 

 

When you shift the take-off point after the block, the output Y(s) will be same. But, there is 

difference in X(s) value. So, in order to get the same X(s) value, we require one more 
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block 1/G(s). It is having the input Y(s) and the output is X(s) this block diagram is shown in 

the following figure. 
 

Shifting Take-off Point from a Position after a Block to a position before the Block 

Consider the block diagram shown in the following figure. Here, the take-off point is present 

after the block. 

 
 

When you shift the take-off point before the block, the output Y(s) will be same. But, there 

is difference in X(s) value. So, in order to get same X(s) value, we require one more block G(s) 

It is having the input R(s) and the output is X(s). This block diagram is shown in the following 

figure. 
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The concepts discussed in the previous chapter are helpful for reducing (simplifying) the 

block diagrams. 

Block Diagram Reduction Rules 

Follow these rules for simplifying (reducing) the block diagram, which is having many blocks, 

summing points and take-off points. 

 Rule 1 − Check for the blocks connected in series and simplify.

 Rule 2 − Check for the blocks connected in parallel and simplify.

 Rule 3 − Check for the blocks connected in feedback loop and simplify.

 Rule 4 − If there is difficulty with take-off point while simplifying, shift it towards right.

 Rule 5 − If there is difficulty with summing point while simplifying, shift it towards left.

 Rule 6 − Repeat the above steps till you get the simplified form, i.e., single block. 

Note − The transfer function present in this single block is the transfer function of the overall 

block diagram.

Note − Follow these steps in order to calculate the transfer function of the block diagram 
having multiple inputs. 

 

 Step 1 − Find the transfer function of block diagram by considering one input at a 
time and make the remaining inputs as zero.

 Step 2 − Repeat step 1 for remaining inputs.
 Step 3 − Get the overall transfer function by adding all those transfer functions.

 

The block diagram reduction process takes more time for complicated systems because; we 
have to draw the (partially simplified) block diagram after each step. So, to overcome this 
drawback, use signal flow graphs (representation). 

 

 
Block Diagram Reduction- Summary 
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Examples: 

 

1. Consider the block diagram shown in the following figure. Let us simplify (reduce) this 

block diagram using the block diagram reduction rules. 
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2. Determine the transfer function Y(s)/R(s). 
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3. Determine the transfer function Y2(s)/R1(s). 
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Signal Flow Graph 

Signal flow graph is a graphical representation of algebraic equations. In this chapter, let us 

discuss the basic concepts related signal flow graph and also learn how to draw signal flow 

graphs. 

Basic Elements of Signal Flow Graph 

Nodes and branches are the basic elements of signal flow graph. 

Node 

Node is a point which represents either a variable or a signal. There are three types of nodes 

— input node, output node and mixed node. 

 Input Node − It is a node, which has only outgoing branches.

 Output Node − It is a node, which has only incoming branches.

 Mixed Node − It is a node, which has both incoming and outgoing branches.

Example 

Let us consider the following signal flow graph to identify these nodes. 
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Branch 

Branch is a line segment which joins two nodes. It has both gain and direction. For example, 

there are four branches in the above signal flow graph. These branches have gains of a, b, 

c and -d. 

 

 
Construction of Signal Flow Graph 

Let us construct a signal flow graph by considering the following algebraic equations − 
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Conversion of Block Diagrams into Signal Flow Graphs 

Follow these steps for converting a block diagram into its equivalent signal flow graph. 

 Represent all the signals, variables, summing points and take-off points of block 

diagram as nodes in signal flow graph.

 Represent the blocks of block diagram as branches in signal flow graph.

 Represent the transfer functions inside the blocks of block diagram as gains of the 

branches in signal flow graph.

 Connect the nodes as per the block diagram. If there is connection between two 

nodes (but there is no block in between), then represent the gain of the branch as 

one. For example, between summing points, between summing point and takeoff 

point, between input and summing point, between take-off point and output.

Example 

Let us convert the following block diagram into its equivalent signal flow graph. 
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Represent the input signal R(s) and   output   signal C(s) of   block   diagram   as   input 

node R(s) and output node C(s) of signal flow graph. 

Just for reference, the remaining nodes (y1 to y9) are labeled in the block diagram. There are 

nine nodes other than input and output nodes. That is four nodes for four summing points,  

four nodes for four take-off points and one node for the variable between blocks G1and G2. 

 
 

 
The following figure shows the equivalent signal flow graph. 

 

Let us now discuss the Mason’s Gain Formula. Suppose there are ‘N’ forward paths in a signal 

flow graph. The gain between the input and the output nodes of a signal flow graph is 
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nothing but the transfer function of the system. It can be calculated by using Mason’s gain 

formula. 

Mason’s gain formula is 
 

 
Where, 

 C(s) is the output node
 

 R(s) is the input node

 T is the transfer function or gain between R(s) and C(s)

 Pi is the ith forward path gain

 

Δ=1−(sum of all individual loop gains) +(sum of gain products of all possible two 
nontouching loops)−(sum of gain products of all possible three nontouching loops) 
+…. 

Δi is obtained from Δ by removing the loops which are touching the ith forward path. 
 
 
 

Consider the following signal flow graph in order to understand the basic terminology 

involved here. 
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Loop 

The path that starts from one node and ends at the same node is known as a loop. Hence, it 

is a closed path. 

 

Calculation of Transfer Function using Mason’s Gain Formula 

Let us consider the same signal flow graph for finding transfer function. 
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 Number of forward paths, N = 2.

 First forward path is - y1→y2→y3→y4→y5→y6.

 First forward path gain, p1=abcde

 Second forward path is - y1→y2→y3→y5→y6

 Second forward path gain, p2=abge

 Number of individual loops, L = 5.
 

 
 Number of two non-touching loops = 2.

 First non-touching loops pair is - y2→y3→y2, y4→y5→y4.

 Gain product of first non-touching loops pair l1l4=bjdi

 Second non-touching loops pair is - y2→y3→y2, y5→y5.

 Gain product of second non-touching loops pair is l1l5=bjf

Higher number of (more than two) non-touching loops are not present in this signal flow 

graph.We know, 
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Example-1: Determine the transfer function C(s)/R(s). 
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Example-2: Determine the transfer function C(s)/R(s). 
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Example-3: Determine the transfer function C(s)/R(s). 
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UNIT-II 
 

TIME RESPONSE ANALYSIS OF STANDARD TEST SIGNALSBE 

 
We can analyze the response of the control systems in both the time domain and the 

frequency domain. We will discuss frequency response analysis of control systems in later 

chapters. Let us now discuss about the time response analysis of control systems. 

Whatis Time Response? 

If the output of control system for an input varies with respect to time, then it is called 

the time response of the control system. The time response consists of two parts. 

 

 Transient response

 Steady state response

The response of control system in time domain is shown in the following figure. 
 

 

Where, 
 

 ctr(t) is the transient response
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 css(t) is the steady state response

Transient Response 

After applying input to the control system, output takes certain time to reach steady state. 

So, the output will be in transient state till it goes to a steady state. Therefore, the response 

of the control system during the transient state is known as transient response. 

The transient response will be zero for large values of ‘t’. Ideally, this value of ‘t’ is infinity 

and practically, it is five times constant. 

Mathematically, we can write it as 

 

 
Steady state Response 

The part of the time response that remains even after the transient response has zero value 

for large values of ‘t’ is known as steady state response. This means, the transient response 

will be zero even during the steady state. 

Example 

Let us find the transient and steady state terms of the time response of the control system 

 
Here, the second term will be zero as t denotes infinity. So, this is the transient term. 

And the first term 10 remains even as t approaches infinity. So, this is the steady state term. 

Standard Test Signals 

The standard test signals are impulse, step, ramp and parabolic. These signals are used to 

know the performance of the control systems using time response of the output. 

Unit Impulse Signal 

A unit impulse signal, δ(t) is defined as 
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So, the unit impulse signal exists only at‘t’ is equal to zero. The area of this signal under small 

interval of time around‘t’ is equal to zero is one. The value of unit impulse signal is zero for 

all other values of‘t’. 

Unit Step Signal 

A unit step signal, u(t) is defined as 
 

 
Following figure shows unit step signal. 

 

 
 
 
 
 
 

So, the unit step signal exists for all positive values of‘t’ including zero. And its value is one 

during this interval. The value of the unit step signal is zero for all negative values of‘t’. 
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Unit Ramp Signal 

A unit ramp signal, r (t) is defined as 
 
 

So, the unit ramp signal exists for all positive values of‘t’ including zero. And its value 

increases linearly with respect to‘t’ during this interval. The value of unit ramp signal is zero 

for all negative values of‘t’. 

Unit Parabolic Signal 

A unit parabolic signal, p(t) is defined as, 
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So, the unit parabolic signal exists for all the positive values of‘t’ including zero. And its value 

increases non-linearly with respect to‘t’ during this interval. The value of the unit parabolic 

signal is zero for all the negative values of‘t’. 

In this chapter, let us discuss the time response of the first order system. Consider the 

following block diagram of the closed loop control system. Here, an open loop transfer 

function, 1/sT is connected with a unity negative feedback. 
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Impulse Response of First Order System 

Consider the unit impulse signal as an input to the first order system. 

So, r(t)=δ(t) 

Apply Laplace transform on both the sides. 

R(s) =1 

 
 
 
 
 
 
 

Rearrange the above equation in one of the standard forms of Laplace 

transforms. 
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Applying Inverse Laplace Transform on both the sides, 
 

 
 

 
The unit impulse response is shown in the following figure. 

 

 

 
The unit impulse response, c(t) is an exponential decaying signal for positive values of ‘t’ and 

it is zero for negative values of ‘t’. 

Step Response of First Order System 

Consider the unit step signal as an input to first order system. 

So, r(t)=u(t) 
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On both the sides, the denominator term is the same. So, they will get cancelled by each 

other. Hence, equate the numerator terms. 

1=A(sT+1)+Bs 
 

By equating the constant terms on both the sides, you will get A = 1. 

Substitute, A = 1 and equate the coefficient of the s terms on both the sides. 

0=T+B 

⇒B=−T 
 

Substitute, A = 1 and B = −T in partial fraction expansion of C(s) 

Apply inverse Laplace transform on both the sides. 

 

 

The unit step response, c(t) has both the transient and the steady state terms. 
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The transient term in the unit step response is - 
 

The steady state term in the unit step response is – 

The following figure shows the unit step response 
 

 
 

The value of the unit step response, c(t) is zero at t = 0 and for all negative values of t. It is 

gradually increasing from zero value and finally reaches to one in steady state. So, the steady 

state value depends on the magnitude of the input. 

Ramp Response of First Order System 

Consider the unit ramp signal as an input to the first order system. 

So, r(t)=t u(t) 

Apply Laplace transform on both the sides. 
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On both the sides, the denominator term is the same. So, they will get cancelled by each 

other. Hence, equate the numerator terms. 

 

By equating the constant terms on both the sides, you will get A = 1. 

Substitute, A = 1 and equate the coefficient of the s terms on both the sides. 

0=T+B⇒B=−T 
 

Similarly, substitute B = −T and equate the coefficient of s2 terms on both the sides. You will 

get C=T2 

Substitute A = 1, B = −T and C=T2 in the partial fraction expansion of C(s). 
 

 
Apply inverse Laplace transform on both the sides. 

 

 

The unit ramp response, c(t) has both the transient and the steady state terms. 

The transient term in the unit ramp response is 

 

The steady state term in the unit ramp response is – 
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The figure below is the unit ramp response: 
 

 
 

The unit ramp response, c(t) follows the unit ramp input signal for all positive values of t. 

But, there is a deviation of T units from the input signal. 

 

Parabolic Response of First Order System 

Consider the unit parabolic signal as an input to the first order system. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
\ 
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Apply inverse Laplace transform on both the sides. 

 

 
The unit parabolic response, c(t) has both the transient and the steady state terms. 

The transient term in the unit parabolic response is 

 
The steady state term in the unit parabolic response is 

 

 
From these responses, we can conclude that the first order control systems are not stable 

with the ramp and parabolic inputs because these responses go on increasing even at infinite 

amount of time. The first order control systems are stable with impulse and step inputs 

because these responses have bounded output. But, the impulse response doesn’t have 

steady state term. So, the step signal is widely used in the time domain for analyzing the 

control systems from their responses. 

In this chapter, let us discuss the time response of second order system. Consider the 

following block diagram of closed loop control system. Here, an open loop transfer 

function, ωn
2 / s(s+2δωn) is connected with a unity negative feedback. 
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The power of ‘s’ is two in the denominator term. Hence, the above transfer function is of the 

second order and the system is said to be the second order system. 

The characteristic equation is - 
 

 
 
 
 
 
 
 
 

b 

 
 The two roots are imaginary when δ = 0.

 The two roots are real and equal when δ = 1.

 The two roots are real but not equal when δ > 1.
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 The two roots are complex conjugate when 0 < δ < 1. 

We can write C(s) equation as,

 

Where, 

 C(s) is the Laplace transform of the output signal, c(t)
 

 R(s) is the Laplace transform of the input signal, r(t)
 

 ωn is the natural frequency
 

 δ is the damping ratio.

Follow these steps to get the response (output) of the second order system in the time 

domain. 

 
 
 
 

Step Response of Second Order System 

Consider the unit step signal as an input to the second order system.Laplace transform of 

the unit step signal is, 
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So, the unit step response of the second order system is having damped oscillations 

(decreasing amplitude) when ‘δ’ lies between zero and one. 

Case 4: δ > 1 

We can modify the denominator term of the transfer function as follows − 
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Since it is over damped, the unit step response of the second order system when δ > 1 will 

never reach step input in the steady state. 

Impulse Responseof SecondOrde r System 

The impulse response of the second order system can be obtained by using any one of these 

two methods. 

 Follow the procedure involved while deriving step response by considering the value 

of R(s) as 1 instead of 1/s.

 Do the differentiation of the step response.

The following table shows the impulse response of the second order system for 4 cases of 

the damping ratio. 
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In this chapter, let us discuss the time domain specifications of the second order system. The 

step response of the second order system for the underdamped case is shown in the 

following figure. 

 

All the time domain specifications are represented in this figure. The response up to the 

settling time is known as transient response and the response after the settling time is known 

as steady state response. 

Delay Time 
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It is the time required for the response to reach half of its final value from the zero instant. 

It is denoted by tdtd. 

Consider the step response of the second order system for t ≥ 0, when ‘δ’ lies between zero 

and one. 
 

 

Rise Time 

It is the time required for the response to rise from 0% to 100% of its final value. This is 

applicable for the under-damped systems. For the over-damped systems, consider the 

duration from 10% to 90% of the final value. Rise time is denoted by tr. 

At t = t1 = 0, c(t) = 0. 

We know that the final value of the step response is one. Therefore, at t=t2, the value of step 

response is one. Substitute, these values in the following equation. 
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From above equation, we can conclude that the rise time tr and the damped 

frequency ωd are inversely proportional to each other. 

Peak Time 

It is the time required for the response to reach the peak value for the first time. It is 

denoted by tp. At t=tp the first derivate of the response is zero. 

We know the step response of second order system for under-damped case is 
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From the above equation, we can conclude that the peak time tp and the damped 

frequency ωd are inversely proportional to each other. 

Peak Overshoot 

Peak overshoot Mp is defined as the deviation of the response at peak time from the final 

value of response. It is also called the maximum overshoot. 

Mathematically, we can write it as  

Mp=c(tp) − c(∞) 
 

Where,c(tp) is the peak value of the response, c(∞) is the final (steady state) value of the 

response. 

At t=tp, the response c(t) is - 
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From the above equation, we can conclude that the percentage of peak overshoot %Mp will 

decrease if the damping ratio δ increases. 

Settling time 

It is the time required for the response to reach the steady state and stay within the specified 

tolerance bands around the final value. In general, the tolerance bands are 2% and 5%. The 

settling time is denoted by ts. 
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The settling time for 5% tolerance band is – 

 

 
The settling time for 2% tolerance band is – 

 

 

 

Where, τ is the time constant and is equal to 1/δωn. 

 Both the settling time ts and the time constant τ are inversely proportional to the 

damping ratio δ.

 Both the settling time ts and the time constant τ are independent of the system gain. 

That means even the system gain changes, the settling time ts and time 

constant τ will never change.

Example 

Let us now find the time domain specifications of a control system having the closed loop 

transfer function when the unit step signal is applied as an input to this control system. 

We know that the standard form of the transfer function of the second order closed loop 

control system as 
 

 

By equating these two transfer functions, we will get the un-damped natural frequency ωn as 

2 rad/sec and the damping ratio δ as 0.5. 

We know the formula for damped frequency ωd as 
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Substitute the above necessary values in the formula of each time domain specification and 

simplify in order to get the values of time domain specifications for given transfer function. 

The following table shows the formulae of time domain specifications, substitution of 

necessary values and the final values 
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The deviation of the output of control system from desired response during steady state is 

known as steady state error. It is represented as ess. We can find steady state error using 

the final value theorem as follows. 
 

 

 
Where, 

E(s) is the Laplace transform of the error signal, e(t) 

Let us discuss how to find steady state errors for unity feedback and non-unity feedback 

control systems one by one. 

Steady State Errors for Unity Feedback Systems 

Consider the following block diagram of closed loop control system, which is having unity 

negative feedback. 
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The following table shows the steady state errors and the error constants for standard input 

signals like unit step, unit ramp & unit parabolic signals. 

 
Where, Kp, Kv and Ka are position error constant, velocity error constant and acceleration 

error constant respectively. 

Note − If any of the above input signals has the amplitude other than unity, then multiply 

corresponding steady state error with that amplitude. 
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Note − We can’t define the steady state error for the unit impulse signal because, it exists 

only at origin. So, we can’t compare the impulse response with the unit impulse input 

as t denotes infinity 

 

We will get the overall steady state error, by adding the above three steady state errors. 

ess = ess1+ess2+ess3 

⇒ess=0+0+1=1⇒ess=0+0+1=1 

Therefore, we got the steady state error ess as 1 for this example. 

Steady State Errorsfor Non-Unity Feedback Systems 

Consider the following block diagram of closed loop control system, which is having non unity 

negative feedback. 
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We can find the steady state errors only for the unity feedback systems. So, we have to 

convert the non-unity feedback system into unity feedback system. For this, include one 

unity positive feedback path and one unity negative feedback path in the above block 

diagram. The new block diagram looks like as shown below. 

 

 
Simplify the above block diagram by keeping the unity negative feedback as it is. The 

following is the simplified block diagram 
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This block diagram resembles the block diagram of the unity negative feedback closed loop 

control system. Here, the single block is having the transfer function G(s) / [ 

1+G(s)H(s)−G(s)] instead of G(s).You can now calculate the steady state errors by using 

steady state error formula given for the unity negative feedback systems. 

Note − It is meaningless to find the steady state errors for unstable closed loop systems. So, 

we have to calculate the steady state errors only for closed loop stable systems. This means 

we need to check whether the control system is stable or not before finding the steady state 

errors. In the next chapter, we will discuss the concepts-related stability. 

The various types of controllers are used to improve the performance of control systems. In 

this chapter, we will discuss the basic controllers such as the proportional, the derivative and 

the integral controllers. 

Proportional Controller 

The proportional controller produces an output, which is proportional to error signal. 
 

 

 

Therefore, the transfer function of the proportional controller is KPKP. 

Where, 

U(s) is the Laplace transform of the actuating signal u(t) 

E(s) is the Laplace transform of the error signal e(t) 

KP is the proportionality constant 
 

The block diagram of the unity negative feedback closed loop control system along with the 

proportional controller is shown in the following figure. 
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Derivative Controller 

The derivative controller produces an output, which is derivative of the error signal. 
 

 

Therefore, the transfer function of the derivative controller is KDs. 

Where, KD is the derivative constant. 

The block diagram of the unity negative feedback closed loop control system along with the 

derivative controller is shown in the following figure. 
 

The derivative controller is used to make the unstable control system into a stable one. 
 

 
Integral Controller 

The integral controller produces an output, which is integral of the error signal. 
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Where, KIKI is the integral constant. 

The block diagram of the unity negative feedback closed loop control system along with the 

integral controller is shown in the following figure. 
 

 

The integral controller is used to decrease the steady state error. 

Let us now discuss about the combination of basic controllers. 

Proportional Derivative (PD) Controller 

The proportional derivative controller produces an output, which is the combination of the 

outputs of proportional and derivative controllers. 
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Therefore, the transfer function of the proportional derivative controller is KP+KDs. 

The block diagram of the unity negative feedback closed loop control system along with the 

proportional derivative controller is shown in the following figure. 
 

The proportional derivative controller is used to improve the stability of control system 

without affecting the steady state error. 

Proportional Integral (PI) Controller 

The proportional integral controller produces an output, which is the combination of outputs 

of the proportional and integral controllers. 

 

The block diagram of the unity negative feedback closed loop control system along with the 

proportional integral controller is shown in the following figure. 
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The proportional integral controller is used to decrease the steady state error without 

affecting the stability of the control system. 

Proportional Integral Derivative (PID) Controller 

The proportional integral derivative controller produces an output, which is the combination 

of the outputs of proportional, integral and derivative controllers. 

 
 
 

 

The block diagram of the unity negative feedback closed loop control system along with the 

proportional integral derivative controller is shown in the following figure. 
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UNIT - III 

FREQUENCY RESPONSE ANALYSIS 

Stability is an important concept. In this chapter, let us discuss the stability of system and 

types of systems based on stability. 

Whatis Stability? 

A system is said to be stable, if its output is under control. Otherwise, it is said to be unstable. 

A stable system produces a bounded output for a given bounded input. 

The following figure shows the response of a stable system. 

 

This is the response of first order control system for unit step input. This response has the 

values between 0 and 1. So, it is bounded output. We know that the unit step signal has the 

value of one for all positive values of t including zero. So, it is bounded input. Therefore, the 

first order control system is stable since both the input and the output are bounded. 

Types of Systems based on Stability 

We can classify the systems based on stability as follows. 

 
 Absolutely stable system

 Conditionally stable system

 Marginally stable system

Absolutely Stable System 

If the system is stable for all the range of system component values, then it is known as 

the absolutely stable system. The open loop control system is absolutely stable if all the 

poles of the open loop transfer function present in left half of ‘s’ plane. Similarly, the closed 

loop control system is absolutely stable if all the poles of the closed loop transfer function 

present in the left half of the ‘s’ plane. 
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Conditionally Stable System 

If the system is stable for a certain range of system component values, then it is known 

as conditionally stable system. 

Marginally Stable System 

If the system is stable by producing an output signal with constant amplitude and constant 

frequency of oscillations for bounded input, then it is known as marginally stable system. 

The open loop control system is marginally stable if any two poles of the open loop transfer 

function is present on the imaginary axis. Similarly, the closed loop control system is 

marginally stable if any two poles of the closed loop transfer function is present on the 

imaginary axis. In this chapter, let us discuss the stability analysis in the ‘s’ domain using the 

Routh-Hurwitz stability criterion. In this criterion, we require the characteristic equation to 

find the stability of the closed loop control systems. 

Routh-Hurwitz Stability Criterion 

Routh-Hurwitz stability criterion is having one necessary condition and one sufficient 

condition for stability. If any control system doesn’t satisfy the necessary condition, then we 

can say that the control system is unstable. But, if the control system satisfies the necessary 

condition, then it may or may not be stable. So, the sufficient condition is helpful for knowing 

whether the control system is stable or not. 

Necessary Condition for Routh-Hurwitz Stability 

The necessary condition is that the coefficients of the characteristic polynomial should be 

positive. This implies that all the roots of the characteristic equation should have negative 

real parts. 

Consider the characteristic equation of the order ‘n’ is - 
 

 

Note that, there should not be any term missing in the nth order characteristic equation. This 

means that the nth order characteristic equation should not have any coefficient that is of 

zero value. 

Sufficient Condition for Routh-Hurwitz Stability 

The sufficient condition is that all the elements of the first column of the Routh array should 

have the same sign. This means that all the elements of the first column of the Routh array 

should be either positive or negative. 

Routh Array Method 
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If all the roots of the characteristic equation exist to the left half of the ‘s’ plane, then the 

control system is stable. If at least one root of the characteristic equation exists to the right 

half of the ‘s’ plane, then the control system is unstable. So, we have to find the roots of the 

characteristic equation to know whether the control system is stable or unstable. But, it is  

difficult to find the roots of the characteristic equation as order increases. 

So, to overcome this problem there we have the Routh array method. In this method, there 

is no need to calculate the roots of the characteristic equation. First formulate the Routh 

table and find the number of the sign changes in the first column of the Routh table. The 

number of sign changes in the first column of the Routh table gives the number of roots of 

characteristic equation that exist in the right half of the ‘s’ plane and the control system is 

unstable. 

Follow this procedure for forming the Routh table. 

 Fill the first two rows of the Routh array with the coefficients of the characteristic  

polynomial as mentioned in the table below. Start with the coefficient of sn and 

continue up to the coefficient of s0.

 Fill the remaining rows of the Routh array with the elements as mentioned in the table 

below. Continue this process till you get the first column element of row s0s0 is an. 

Here, an is the coefficient of s0 in the characteristic polynomial.

Note − If any row elements of the Routh table have some common factor, then you can 

divide the row elements with that factor for the simplification will be easy. 

The following table shows the Routh array of the nth order characteristic polynomial. 
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Example: 

Let us find the stability of the control system having characteristic equation, 
 

 
 

Step 1 − Verify the necessary condition for the Routh-Hurwitz stability. 

All the coefficients of the characteristic polynomial, 

are positive. So, the control system satisfies the necessary 

condition. 

Step 2 − Form the Routh array for the given characteristic polynomial. 
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Step 3 − Verify the sufficient condition for the Routh-Hurwitz stability. 

All the elements of the first column of the Routh array are positive. There is no sign change 

in the first column of the Routh array. So, the control system is stable. 

Special Cases of Routh Array 

We may come across two types of situations, while forming the Routh table. It is difficult to 

complete the Routh table from these two situations. 

The two special cases are − 

 
 The first element of any row of the Routh’s array is zero.

 All the elements of any row of the Routh’s array are zero.

Let us now discuss how to overcome the difficulty in these two cases, one by one. 

First Element of any row of the Routh’s array is zero 

If any row of the Routh’s array contains only the first element as zero and at least one of the 

remaining elements have non-zero value, then replace the first element with a small positive 

integer, ϵ. And then continue the process of completing the Routh’s table. Now, find the 

number of sign changes in the first column of the Routh’s table by substituting ϵϵ tends to 

zero. 

 
 

 
Example 
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Let us find the stability of the control system having characteristic equation, 
 

 

Step 1 − Verify the necessary condition for the Routh-Hurwitz stability. 

All the coefficients of the characteristic polynomial, 

 

are positive. So, the control system satisfied the 

necessary condition. 

Step 2 − Form the Routh array for the given characteristic polynomial. 
 

 

The row s3 elements have 2 as the common factor. So, all these elements are divided by 2. 

Special case (i) − Only the first element of row s2 is zero. So, replace it by ϵ and continue the 

process of completing the Routh table. 

 

Step 3 − Verify the sufficient condition for the Routh-Hurwitz stability. 
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As ϵ tends to zero, the Routh table becomes like this. 

 

There are two sign changes in the first column of Routh table. Hence, the control system is 

unstable. 

All the Elements of any row of the Routh’s array are zero 

In this case, follow these two steps − 

 Write the auxilary equation, A(s) of the row, which is just above the row of zeros.

 Differentiate the auxiliary equation, A(s) with respect to s. Fill the row of zeros with 

these coefficients.

 
 
 
 
 
 

 
Example 

Let us find the stability of the control system having characteristic equation, 
 

 

Step 1 − Verify the necessary condition for the Routh-Hurwitz stability. 

All the coefficients of the given characteristic polynomial are positive. So, the control system 

satisfied the necessary condition. 

Step 2 − Form the Routh array for the given characteristic polynomial. 
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Step 3 − Verify the sufficient condition for the Routh-Hurwitz stability. 

There are two sign changes in the first column of Routh table. Hence, the control system is 

unstable. 

In the Routh-Hurwitz stability criterion, we can know whether the closed loop poles are in 

on left half of the ‘s’ plane or on the right half of the ‘s’ plane or on an imaginary axis. So, we 

can’t find the nature of the control system. To overcome this limitation, there is a technique 

known as the root locus. 

Root locus Technique 

In the root locus diagram, we can observe the path of the closed loop poles. Hence, we can 

identify the nature of the control system. In this technique, we will use an open loop transfer 

function to know the stability of the closed loop control system. 

 
 

Basics of Root Locus 

The Root locus is the locus of the roots of the characteristic equation by varying system gain 

K from zero to infinity. 
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We know that, the characteristic equation of the closed loop control system is 
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From above two cases, we can conclude that the root locus branches start at open loop poles 

and end at open loop zeros. 

Angle Condition and Magnitude Condition 

The points on the root locus branches satisfy the angle condition. So, the angle condition is 

used to know whether the point exist on root locus branch or not. We can find the value of 

K for the points on the root locus branches by using magnitude condition. So, we can use the 

magnitude condition for the points, and this satisfies the angle condition. 

Characteristic equation of closed loop control system is 
 

 

The angle condition is the point at which the angle of the open loop transfer function is an 

odd multiple of 1800. 

 
 
 

Magnitude of G(s)H(s)G(s)H(s) is – 
 

 
The magnitude condition is that the point (which satisfied the angle condition) at which the 

magnitude of the open loop transfers function is one. 

The root locus is a graphical representation in s-domain and it is symmetrical about the real 

axis. Because the open loop poles and zeros exist in the s-domain having the values either as 

real or as complex conjugate pairs. In this chapter, let us discuss how to construct (draw) the 

root locus. 

Rules for Construction of Root Locus 

Follow these rules for constructing a root locus. 

Rule 1 − Locate the open loop poles and zeros in the‘s’ plane. 

Rule 2 − Find the number of root locus branches. 

We know that the root locus branches start at the open loop poles and end at open loop 

zeros. So, the number of root locus branches N is equal to the number of finite open loop 

poles P or the number of finite open loop zeros Z, whichever is greater. 
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Mathematically, we can write the number of root locus branches N as 

N=P if P≥Z 

N=Z if P<Z 

Rule 3 − Identify and draw the real axis root locus branches. 

If the angle of the open loop transfer function at a point is an odd multiple of 1800, then that 

point is on the root locus. If odd number of the open loop poles and zeros exist to the left 

side of a point on the real axis, then that point is on the root locus branch. Therefore, the 

branch of points which satisfies this condition is the real axis of the root locus branch. 

Rule 4 − Find the centroid and the angle of asymptotes. 

 If P=Z, then all the root locus branches start at finite open loop poles and end at finite 

open loop zeros.

 If P>Z, then Z number of root locus branches start at finite open loop poles and end 

at finite open loop zeros and P−Z number of root locus branches start at finite open 

loop poles and end at infinite open loop zeros.

 If P<Z , then P number of root locus branches start at finite open loop poles and end 

at finite open loop zeros and Z−P number of root locus branches start at infinite open 

loop poles and end at finite open loop zeros.

So, some of the root locus branches approach infinity, when P≠Z. Asymptotes give the 

direction of these root locus branches. The intersection point of asymptotes on the real axis 

is known as centroid. 

 
 

 
We can calculate the centroid α by using this formula, 

 

 

Rule 5 − Find the intersection points of root locus branches with an imaginary axis. 
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We can calculate the point at which the root locus branch intersects the imaginary axis and 

the value of K at that point by using the Routh array method and special case (ii). 

 If all elements of any row of the Routh array are zero, then the root locus branch 

intersects the imaginary axis and vice-versa.

 Identify the row in such a way that if we make the first element as zero, then the 

elements of the entire row are zero. Find the value of K for this combination.

 Substitute this K value in the auxiliary equation. You will get the intersection point of 

the root locus branch with an imaginary axis.

Rule 6 − Find Break-away and Break-in points. 

 If there exists a real axis root locus branch between two open loop poles, then there 

will be a break-away point in between these two open loop poles.

 If there exists a real axis root locus branch between two open loop zeros, then there 

will be a break-in point in between these two open loop zeros.

Note − Break-away and break-in points exist only on the real axis root locus branches. 

Follow these steps to find break-away and break-in points. 

 Write K in terms of s from the characteristic equation 1+G(s)H(s)=0.

 Differentiate K with respect to s and make it equal to zero. Substitute these values 

of ss in the above equation.

 The values of ss for which the K value is positive are the break points.

 
 

 
Rule 7 − Find the angle of departure and the angle of arrival. 

The Angle of departure and the angle of arrival can be calculated at complex conjugate open 

loop poles and complex conjugate open loop zeros respectively. 

The formula for the angle of departure ϕd is 
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Example 

Let us now draw the root locus of the control system having open loop transfer 
 

function, 

Step 1 − The given open loop transfer function has three poles at s = 0, 

s = -1, s = -5. It doesn’t have any zero. Therefore, the number of root locus branches is equal 

to the number of poles of the open loop transfer function. 

N=P=3 
 

 
The three poles are located are shown in the above figure. The line segment between s=−1, 

and s=0 is one branch of root locus on real axis. And the other branch of the root locus on 

the real axis is the line segment to the left of s=−5. 

Step 2 − We will get the values of the centroid and the angle of asymptotes by using the 

given formulae. 

Centroid 
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The angle of asymptotes are 

The centroid and three asymptotes are shown in the following figure. 
 

Step 3 − Since two asymptotes have the angles of 600600 and 30003000, two root locus 

branches intersect the imaginary axis. By using the Routh array method and special case(ii), 

the root locus branches intersects the imaginary axis at and 

There will be one break-away point on the real axis root locus branch between the poles s 

=−1 and s=0. By following the procedure given for the calculation of break-away point, we 

will get it as s =−0.473. 

The root locus diagram for the given control system is shown in the following figure. 
 

 

In this way, you can draw the root locus diagram of any control system and observe the 

movement of poles of the closed loop transfer function. 
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From the root locus diagrams, we can know the range of K values for different types of 

damping. 

Effects of Adding Open Loop Poles and Zeros on Root Locus 

The root locus can be shifted in ‘s’ plane by adding the open loop poles and the open loop 

zeros. 

 If we include a pole in the open loop transfer function, then some of root locus 

branches will move towards right half of ‘s’ plane. Because of this, the damping 

ratio δ decreases. Which implies, damped frequency ωd increases and the time 

domain specifications like delay time td, rise time tr and peak time tp decrease. But, 

it effects the system stability.

 If we include a zero in the open loop transfer function, then some of root locus 

branches will move towards left half of ‘s’ plane. So, it will increase the control system 

stability. In this case, the damping ratio δ increases. Which implies, damped 

frequency ωd decreases and the time domain specifications like delay time td, rise 

time tr and peak time tp increase.

So, based on the requirement, we can include (add) the open loop poles or zeros to the 

transfer function. 
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Effects of adding a pole or a zero to the root locus of a second- order system 
 

We discussed how we could change the value of gain K to change the position of the 

closed-loop poles. This corresponds to placing a proportional gain, K, in cascade with the 

system G(s) and finding the closed-loop poles for different values of gain, K. However, 

proportional control is a simple form of control; it does not provide us with zero steady 

example, in some control design problems, to produce the performance required in the 

design specifications we need to move the poles to some positions on the s-plane, which 

may not lie on a root locus defined by the simple proportional gain K. To be able to move 

the poles to any position on the s-plane, we need to use a more complicated controller. 

For example, we may need to add a zero or a pole to the controller and see how this will 

affect the root locus and hence the position of the closed-loop poles. Examples of 

controllers with poles or zeros are: 
 

 
Thus, we need to know how the root locus will change if we add a pole or a zero.  
To investigate this, we will use a simple example. 

Effects of adding a zero on the root locus for a second-order system 
 

Consider the second-order system given by 

 

 
The poles are given by s = –p1 and s = –p2 and the simple root locus plot for this 

system is shown in Figure 13.13(a). When we add a zero at s = –z1 to the controller, 
the open-loop transfer function will change to: 

 



 DEPT. OF EEE 

CONTROL SYSTEMS 

 

 

 

 



 DEPT. OF EEE 

CONTROL SYSTEMS 

 

 

UNIT-IV 
 

INTRODUCTION TO CONTROLLER DESIGN 

 
Whatis Frequency Response? 

The response of a system can be partitioned into both the transient response and the steady 

state response. We can find the transient response by using Fourier integrals. The steady 

state response of a system for an input sinusoidal signal is known as the frequency response. 

In this chapter, we will focus only on the steady state response. 

If a sinusoidal signal is applied as an input to a Linear Time-Invariant (LTI) system, then it 

produces the steady state output, which is also a sinusoidal signal. The input and output 

sinusoidal signals have the same frequency, but different amplitudes and phase angles. Let 

the input signal be 
 

Where, 

 A is the amplitude of the input sinusoidal signal.

 ω0 is angular frequency of the input sinusoidal signal. 

We can write, angular frequency ω0 as shown below.
ω0=2πf0 
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Here, f0 is the frequency of the input sinusoidal signal. Similarly, you can follow the same 

procedure for closed loop control system. 

Frequency Domain Specifications 

The frequency domain specifications are 

 Resonant peak

 Resonant frequency

 Bandwidth.

Consider the transfer function of the second order closed control system as 
 

p 
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Resonant Peak 

It is the peak (maximum) value of the magnitude of T(jω). It is denoted by Mr. 

At u=ur, the Magnitude of T(jω) is - 
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Resonant peak in frequency response corresponds to the peak overshoot in the time domain 

transient response for certain values of damping ratio δδ. So, the resonant peak and peak 

overshoot are correlated to each other. 

Bandwidth 

It is the range of frequencies over which, the magnitude of T(jω) drops to 70.7% from its zero 

frequency value. 

At ω=0, the value of u will be zero. 

Substitute, u=0 in M. 

Therefore, the magnitude of T(jω) is one at ω=0 

At 3-dB frequency, the magnitude of T(jω) will be 70.7% of magnitude of T(jω)) at ω=0 
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Bandwidth ωb in the frequency response is inversely proportional to the rise time tr in the 

time domain transient response. 

Bode plots 

The Bode plot or the Bode diagram consists of two plots − 

 
 Magnitude plot

 Phase plot

In both the plots, x-axis represents angular frequency (logarithmic scale). Whereas, yaxis 

represents the magnitude (linear scale) of open loop transfer function in the magnitude plot 

and the phase angle (linear scale) of the open loop transfer function in the phase plot. 

The magnitude of the open loop transfer function in dB is - 
 
 

 
The phase angle of the open loop transfer function in degrees is - 

 
 

 
 

Basic of Bode Plots 

The following table shows the slope, magnitude and the phase angle values of the terms 

present in the open loop transfer function. This data is useful while drawing the Bode plots. 
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The magnitude plot is a horizontal line, which is independent of frequency. The 0 dB line 

itself is the magnitude plot when the value of K is one. For the positive values of K, the 

horizontal line will shift 20logK dB above the 0 dB line. For the negative values of K, the 

horizontal line will shift 20logK dB below the 0 dB line. The Zero degrees line itself is the 

phase plot for all the positive values of K. 
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Consider the open loop transfer function G(s)H(s)=s 

Magnitude M=20logω dB 

Phase angle ϕ=900 

At ω=0.1rad/sec, the magnitude is -20 dB. 

At ω=1rad/sec, the magnitude is 0 dB. 

At ω=10 rad/sec, the magnitude is 20 dB. 
The following figure shows the corresponding Bode plot. 

 

 

The magnitude plot is a line, which is having a slope of 20 dB/dec. This line started 

at ω=0.1rad/sec having a magnitude of -20 dB and it continues on the same slope. It is 

touching 0 dB line at ω=1 rad/sec. In this case, the phase plot is 900 line. 

Consider the open loop transfer function G(s)H(s)=1+sτ. 

Magnitude 

Phase angle 

 
For , the magnitude is 0 dB and phase angle is 0 degrees. 
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For , the magnitude is 20logωτ dB and phase angle is 900. 

The following figure shows the corresponding Bode plot 

 
 
 

The magnitude plot is having magnitude of 0 dB upto ω=1τω=1τ rad/sec. From ω=1τ rad/sec, 

it is having a slope of 20 dB/dec. In this case, the phase plot is having phase angle of 0 degrees 

up to ω=1τ rad/sec and from here, it is having phase angle of 900. This Bode plot is called 

the asymptotic Bode plot. 

As the magnitude and the phase plots are represented with straight lines, the Exact Bode 

plots resemble the asymptotic Bode plots. The only difference is that the Exact Bode plots 

will have simple curves instead of straight lines. 

Similarly, you can draw the Bode plots for other terms of the open loop transfer function 

which are given in the table. 

Rules for Construction of Bode Plots 

Follow these rules while constructing a Bode plot. 

 Represent the open loop transfer function in the standard time constant form.
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 Substitute, s=jωs=jω in the above equation.

 Find the corner frequencies and arrange them in ascending order.

 Consider the starting frequency of the Bode plot as 1/10th of the minimum corner 

frequency or 0.1 rad/sec whichever is smaller value and draw the Bode plot upto 10 

times maximum corner frequency.

 Draw the magnitude plots for each term and combine these plots properly.

 Draw the phase plots for each term and combine these plots properly.

Note − The corner frequency is the frequency at which there is a change in the slope of the 

magnitude plot. 

Example 

Consider the open loop transfer function of a closed loop control syste 

 

 
 

 
Stability Analysis using Bode Plots 

From the Bode plots, we can say whether the control system is stable, marginally stable or 

unstable based on the values of these parameters. 

 

 Gain cross over frequency and phase cross over frequency

 Gain margin and phase margin

Phase Cross over Frequency 

The frequency at which the phase plot is having the phase of -1800 is known as phase cross 

over frequency. It is denoted by ωpc. The unit of phase cross over frequency is rad/sec. 
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Gain Cross over Frequency 

The frequency at which the magnitude plot is having the magnitude of zero dB is known 

as gain cross over frequency. It is denoted by ωgc. The unit of gain cross over frequency 

is rad/sec. 

The stability of the control system based on the relation between the phase cross over 

frequency and the gain cross over frequency is listed below. 

 If the phase cross over frequency ωpc is greater than the gain cross over 

frequency ωgc, then the control system is stable.

 If the phase cross over frequency ωpc is equal to the gain cross over frequency ωgc, 

then the control system is marginally stable.

 If the phase cross over frequency ωpcis less than the gain crosses over frequency ωgc, 

then the control system is unstable.

Gain Margin 

Gain margin GMGM is equal to negative of the magnitude in dB at phase cross over 

frequency. 

GM=20log(1Mpc)=20logMpc 
 

Where, MpcMpc is the magnitude at phase cross over frequency. The unit of gain margin 

(GM) is dB. 

Phase Margin 

The formula for phase margin PMPM is 
PM=1800+ϕgc 

 
Where, ϕgc is the phase angle at gain cross over frequency. The unit of phase margin 

is degrees. 

 
 NOTE: 

The stability of the control system based on the relation between gain margin and phase 

margin is listed below. 

 If both the gain margin GM and the phase margin PM are positive, then the control 

system is stable.

 If both the gain margin GM and the phase margin PM are equal to zero, then the 

control system is marginally stable.

If the gain margin GM and / or the phase margin PM are/is negative, then the control 

system is unstable. 

Polar plots 
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Polar plot is a plot which can be drawn between magnitude and phase. Here, the 

magnitudes are represented by normal values only. 

 
 

This graph sheet consists of concentric circles and radial lines. The concentric circles and 

the radial lines represent the magnitudes and phase angles respectively. These angles are 

represented by positive values in anti-clock wise direction. Similarly, we can represent angles 

with negative values in clockwise direction. For example, the angle 2700 in anti-clock wise 

direction is equal to the angle −900 in clockwise direction. 

Rules for Drawing Polar Plots 

Follow these rules for plotting the polar plots. 

 Substitute, s=jω in the open loop transfer function.

 Write the expressions for magnitude and the phase of G(jω)H(jω)

 Find the starting magnitude and the phase of G(jω)H(jω) by substituting ω=0. So, the 

polar plot starts with this magnitude and the phase angle.
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 Find the ending magnitude and the phase of G(jω)H(jω) by substituting ω=∞ So, the 

polar plot ends with this magnitude and the phase angle.

 Check whether the polar plot intersects the real axis, by making the imaginary term 

of G(jω)H(jω) equal to zero and find the value(s) of ω.

 Check whether the polar plot intersects the imaginary axis, by making real term 

of G(jω)H(jω) equal to zero and find the value(s) of ω.

 For drawing polar plot more clearly, find the magnitude and phase of G(jω)H(jω) by 

considering the other value(s) of ω.

Example 

Consider the open loop transfer function of a closed loop control system. 
 

 

 

 
So, the polar plot starts at (∞,−900) and ends at (0,−2700). The first and the second terms 

within the brackets indicate the magnitude and phase angle respectively. 

Step 3 − Based on the starting and the ending polar co-ordinates, this polar plot will intersect 

the negative real axis. The phase angle corresponding to the negative real axis is −1800 or 

1800. So, by equating the phase angle of the open loop transfer function to either −1800 or 

1800, we will get the ω value as √2. 
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By substituting ω=√2 in the magnitude   of the open   loop transfer function, we will 

get M=0.83. Therefore, the polar plot intersects the negative real axis when ω=√2 and the 

polar coordinate is (0.83,−1800). 

So, we can draw the polar plot with the above information on the polar graph sheet. 

Nyquist Plots 

Nyquist plots are the continuation of polar plots for finding the stability of the closed loop 

control systems by varying ω from −∞ to ∞. That means, Nyquist plots are used to draw the 

complete frequency response of the open loop transfer function. 

Nyquist Stability Criterion 

The Nyquist stability criterion works on the principle of argument. It states that if there are 

P poles and Z zeros are enclosed by the ‘s’ plane closed path, then the 

corresponding G(s)H(s)G(s)H(s) plane must encircle the origin P−ZP−Z times. So, we can 

write the number of encirclements N as, 

N=P−ZN=P−Z 
 

 If the enclosed ‘s’ plane closed path contains only poles, then the direction of the 

encirclement in the G(s)H(s)G(s)H(s) plane will be opposite to the direction of the 

enclosed closed path in the ‘s’ plane.

 If the enclosed ‘s’ plane closed path contains only zeros, then the direction of the 

encirclement in the G(s)H(s)G(s)H(s) plane will be in the same direction as that of the 

enclosed closed path in the ‘s’ plane.

Let us now apply the principle of argument to the entire right half of the‘s’ plane by selecting 

it as a closed path. This selected path is called the Nyquist contour. 

We know that the closed loop control system is stable if all the poles of the closed loop 

transfer function are in the left half of the‘s’ plane. So, the poles of the closed loop transfer 

function are nothing but the roots of the characteristic equation. As the order of the 

characteristic equation increases, it is difficult to find the roots. So, let us correlate these 

roots of the characteristic equation as follows. 

 The Poles of the characteristic equation are same as that of the poles of the open loop 

transfer function.

 The zeros of the characteristic equation are same as that of the poles of the closed 

loop transfer function.

We know that the open loop control system is stable if there is no open loop pole in the the 

right half of the ‘s’ plane. 

i.e.,P=0⇒N=−ZP=0⇒N=−Z 
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We know that the closed loop control system is stable if there is no closed loop pole in the 

right half of the ‘s’ plane. 

i.e.,Z=0⇒N=PZ=0⇒N=P 

Nyquist stability criterion states the number of encirclements about the critical point (1+j0) 

must be equal to the poles of characteristic equation, which is nothing but the poles of the 

open loop transfer function in the right half of the ‘s’ plane. The shift in origin to (1+j0) gives 

the characteristic equation plane. 

Rules for Drawing Nyquist Plots 

Follow these rules for plotting the Nyquist plots. 

 Locate the poles and zeros of open loop transfer function G(s)H(s) in ‘s’ plane. 

 Draw the polar plot by varying ω from zero to infinity. If pole or zero present at s = 0, 

then varying ω from 0+ to infinity for drawing polar plot. 

 Draw the mirror image of above polar plot for values of ω ranging from −∞ to zero 

(0− if any pole or zero present at s=0). 

 The number of infinite radius half circles will be equal to the number of poles or zeros 

at origin. The infinite radius half circle will start at the point where the mirror image 

of the polar plot ends. And this infinite radius half circle will end at the point where 

the polar plot starts. 

After drawing the Nyquist plot, we can find the stability of the closed loop control system 

using the Nyquist stability criterion. If the critical point (-1+j0) lies outside the encirclement, 

then the closed loop control system is absolutely stable. 

Stability Analysis using Nyquist Plots 

From the Nyquist plots, we can identify whether the control system is stable, marginally 

stable or unstable based on the values of these parameters. 

 

 Gain cross over frequency and phase cross over frequency 

 Gain margin and phase margin 

Phase Cross over Frequency 

The frequency at which the Nyquist plot intersects the negative real axis (phase angle is 1800) 

is known as the phase cross over frequency. It is denoted by ωpc. 

Gain Cross over Frequency 

The frequency at which the Nyquist plot is having the magnitude of one is known as the gain 

cross over frequency. It is denoted by ωgc. 

The stability of the control system based on the relation between phase cross over frequency 

and gain cross over frequency is listed below. 
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 If the phase cross over frequency ωpc is greater than the gain cross 

over frequency ωgc, then the control system is stable. 

 If the phase cross over frequency ωpc is equal to the gain cross over 

frequency ωgc, then the control system is marginally stable. 

 If phase cross over frequency ωpc is less than gain cross over frequency ωgc, 

then the control system is unstable. 

Gain Margin 

The gain margin GM is equal to the reciprocal of the magnitude of the Nyquist plot 

at the phase cross over frequency. 

Where, Mpc is the magnitude in normal scale at the phase cross over frequency. 

Phase Margin 

The phase margin PM is equal to the sum of 1800 and the phase angle at the gain 

cross over frequency. 

PM=1800+ϕgc 

 

Where, ϕgc is the phase angle at the gain cross over frequency. 
 
 
 

The stability of the control system based on the relation between the gain margin 

and the phase margin is listed below. 

 If the gain margin GM is greater than one and the phase margin PM is 

positive, then the control system is stable. 

 If the gain margin GMs equal to one and the phase margin PM is zero 

degrees, then the control system is marginally stable. 

 If the gain margin GM is less than one and / or the phase margin PM is 

negative, then the control system is unstable. 

 

  



 DEPT. OF EEE 

CONTROL SYSTEMS 

 

 

COMPENSATION 

Compensator is an additional component or circuit that is inserted into a control system 
to equalize or compensate for a deficient performance. 

 

Necessities of compensation 

 
1. In order to obtain the desired performance of the system, we use compensating 

networks. Compensating networks are applied to the system in the form of feed forward 

path gain adjustment. 

2. Compensate a unstable system to make it stable. 

3. A compensating network is used to minimize overshoot. 

4. These compensating networks increase the steady state accuracy of the system. An 

important point to be noted here is that the increase in the steady state accuracy brings 

instability to the system. 

5. Compensating networks also introduces poles and zeros in the system thereby causes 

changes in the transfer function of the system. Due to this, performance specifications of 

the system change. 

 

Types of Compensator. 

Series or Cascade compensation 

Compensator can be inserted in the forward path as shown in fig below. The transfer 

function of compensator is denoted as Gc(s), whereas that of the original process of the 

plant is denoted by G(s). 

 
 
 
 
 
 

Parallel or feedback compensation 

 
Fig: Parallel Compensator 
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The feedback is taken from some internal element and compensator is introduced in 
such a feedback path to provide an additional internal feedback loop. Such 
compensation is called feedback compensation or parallel compensation. The 
arrangement is shown in fig. 

 

Combined Cascade & feedback compensation or Series parallel 
compensator 

In some cases, it is necessary to provide both types of compensations, series as well as 
feedback. Such a scheme is called series – parallel compensation. The arrangement is 
shown in fig. below. 

 

R(s) 

C(s) 
 
 
 
 
 
 

 

Fig: Series-parallel compensator  

Compensator can be electrical, mechanical, pneumatic or hydrolic type of 

device. Mostly electrical networks are used as compensator in most of the 

control system. The very simplest of these are Lead, lag & lead-lag networks. 

 
what are compensating networks? 

 

A compensating network is one which makes some adjustments in order to make up for 

deficiencies in the system. Compensating devices are may be in the form of electrical, 

mechanical, hydraulic etc. Most electrical compensator is RC filter. The simplest networks 

used for electrical compensator are 

Lead compensator – (to speed up transient response, margin of stability and 

improve error constant in a limited way) 

Lag compensator – (to improve error constant or steady-state behavior – 

while retaining transient response) 

Lead – Lag compensator – (A combination of the above two i.e. to improve 

steady state as well as transient). 

Compensator 

Compensator 
Hc(s) 

Ge(s) G(s) 
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𝑅 + 

 

Phase Lead Compensation 

A system which has one pole and one dominating zero (the zero which is closer to the origin 

than all over zeros is known as dominating zero.) is known as lead network. If we want to 

add a dominating zero for compensation in control system then we have to select lead 

compensation network. The basic requirement of the phase lead network is that all poles 

and zeros of the transfer function of the network must lie on (-)ve real axis interlacing each 

other with a zero located at the origin of nearest origin. Given below is the circuit diagram 

for the phase lead compensation network. 

 
 
 
 
 
 
 
 
 
 

 
Phase Lead Compensation 

Network Transfer Function = 𝐺 (𝑠) 

= 
𝑒0(𝑠)

 

𝑒0(𝑠) 
= 𝑒 (𝑠) 

𝑐 

𝑅2 
𝑒𝑖(𝑠) 

 
 1  

𝑖 

𝑅2 + 
 

𝑅2 

𝑅1𝑥 𝐶𝑠 

 1  
1 𝐶𝑠 

= 

 
𝑒0(𝑠) 

= 
𝑒𝑖(𝑠) 

𝑅 +
 𝑅1  

2 𝑅1𝑐𝑠 + 1 
𝑅2(𝑅1𝐶𝑠 + 1) 

 
 

𝑅1 + 𝑅2(𝑅1𝐶𝑠 + 1) 
 

𝑒0(𝑠) 
= 

𝑒𝑖(𝑠) 

𝑅2 

𝑅2(𝑅1𝐶𝑠 + 1) 
 

 

𝑅1𝑅2𝐶𝑠 + 𝑅1 + 𝑅2 

𝑅1𝐶𝑠 + 1 
= [ 𝑅 + 𝑅   𝑅2  

]
 

1 
 

1 + 𝑇𝑠 
1 + 𝑅1

 + 𝑅2 𝑅1𝐶𝑠 

= 𝛼 [ 
1 + 𝛼𝑇𝑠 

] − − − − − − − − − − − −1 

Where 𝛼 =
    𝑅2       < 1 
𝑅1+𝑅2 

2 
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𝑇 = 𝑅1𝐶 
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𝛼𝑇 

𝑠 + ) 

𝑖 

𝑐 

Equation 1 can be written in the form of 
1 

𝐺 (𝑠) = 
𝛼𝑇(𝑠 + 𝑇) 

𝛼(𝑠 +
 1 

) 
1 

𝐺 (𝑠) = 
(𝑠 + 𝑇)

 
 

𝑐 1   
𝛼𝑇 

𝑆 + 𝑍𝑐 
= 

𝑆 + 𝑃𝑐 
Where 𝑍 = 

𝑇 
𝑎𝑛𝑑 𝑃𝑐 = 

1 

𝛼𝑇 

Let us draw the pole zero plot for the above transfer function. 
 
 
 

Pole Zero Plot of Lead Compensating Network 

Zero is closer to origin so phase lead component is zero dominant. 

The sinusoidal transfer function of the lead network is obtained by substituting S=jω in 

equation 1 
𝑒0(jω) 𝛼(1 + jωT) 

 
Let ⌊𝐺 (jω) = ∅ = ⌊

𝑒0(jω)
 

𝐺(jω) = 
𝑒 (jω) 

= 
(1 + jωαT) 

𝑐 
 
 

as α<1 we have , 

 
Φ is always positive 

𝑒(jω) 

∅ = ⌊𝐺(jω) = tan−1 𝜔𝑇 − tan−1 𝜔𝛼𝑇 − − − −2 

tan−1 𝜔𝛼𝑇 < tan−1 𝜔𝑇 

Therefore the output voltage always lead the input voltage in above network. Hence the 

above network is called lead network. 

𝑐 

1 
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φ 

 
φm 

ω 
ωm 

From equation 2 it is clear that for a given lead network, Φ is function of frequency . 

taking tan on both side of equation 2 

tan ∅ = 
𝜔𝑇 − 𝜔𝛼𝑇 

1 + 𝜔2𝛼𝑇2 − − − −3 

𝜔𝑇 − 𝜔𝛼𝑇 
𝜑 = tan ∅ = 

1 + 𝜔2𝛼𝑇2 

When 𝑑𝜑 = 0 then φ is Maximum. 
𝑑𝜔 

𝑑𝜑 
= 

𝑑𝜔 

(𝑇 − 𝛼𝑇)(1 + 𝜔2𝛼𝑇2) − (𝜔𝑇 − 𝜔𝛼𝑇)(2𝜔𝛼𝑇2) 

1 + 𝜔2𝛼𝑇2 
= 0

 

(𝑇 − 𝛼𝑇)(1 + 𝜔2𝛼𝑇2) − (𝜔𝑇 − 𝜔𝛼𝑇)(2𝜔𝛼𝑇2) = 0 

(𝑇 − 𝛼𝑇)[(1 + 𝜔2𝛼𝑇2) − 2𝜔2𝛼𝑇2] = 0 

(1 + 𝜔2𝛼𝑇2) − 2𝜔2𝛼𝑇2 = 0 

𝜔2𝛼𝑇2 = 1 

𝜔2 = 
1

 
𝛼𝑇2 

 
 
 
 
 
 
 
 
 
 
 
 

Variation of phase angle Φ as a function of ω . 
1 

𝜔 = 𝜔𝑚 = 
𝑇√𝛼 

ωm is the frequency at which maximum phase lead occurs, To find maximum phase lead Φm 

substitute 

𝜔 = 𝜔𝑚 =   
1 

𝑇√𝛼 
in equation 3 

𝜔𝑚𝑇 − 𝜔𝑚𝛼𝑇 
tan ∅𝑚 = 

1  + 𝜔𝑚 2𝛼𝑇2 
  1 

− √𝛼 

= √
𝛼 

= 
1−𝖺 

2 
1−𝖺 

2√𝛼 

tan ∅𝑚 =  
 

2√𝛼 
− − − − − − − − − − − − − 5 

1−𝖺 1 − sin ∅𝑚 
sin ∅𝑚 = 

1+𝖺 
𝑜𝑟 𝖺= 

1 + sin ∅
 − − − 6 

Equation 6 is useful in computing α parameter of the network from the required 

maximum phase lead. 

𝑚 
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From above plot it is observed that 

To obtain phase leads of more than 600 ( i.e. α=0.8), 1 increases rather sharply 
𝖺 

Hence to get phase lead > 600, two cascaded lead networks with moderate values of α 

rather than a single lead network with too small values of α 

BODE PLOT FOR LEAD NETWORK 

Consider a sinusoidal transfer function of the lead network 
𝐺 (jω) = 

(1+jωT) 
,   𝛼 < 1 ------ 1 

 

𝑐 (1+jωαT) 

When ω=0, the network has a gain of α<1 or attenuation of 1/α in frequency domain 

compensation techniques, it is convenient to cancel the DC attenuation of the network with 

an amplification A=1/α. 

Therefore the lead compensation is visualized as shown below. 

 

Therefore sinusoidal transfer function of the lead compensator is 
(1 + jωT) 

𝐺(jω) = 
(1 + jωαT) 

, 𝛼 < 1 − − − − − − − −2 

LOG MAGNITUDE PLOT 

Sr. No. Factor Corner 

Frequency 

Description 

1 1+jωT 
1 

𝜔1 = 
𝑇

 0db line upto corner frequency ω1 and a line of 

slope equal to 20db/decade 

2 1 
 

1 + 𝑗𝜔𝛼𝑇 

1 
𝜔2 = 

𝛼𝑇
 0db line upto corner frequency ω2 and a line of 

slope equal to -20db/decade 

4 12 200 



 DEPT. OF EEE 

CONTROL SYSTEMS 

 

 

𝑇√𝛼 

1 

Phase angle plot  
∅ = ⌊𝐺(jω) = tan−1 𝜔𝑇 − tan−1 𝜔𝛼𝑇 

 

 
 

 
1 1 1 1 2 

𝜔1𝜔2 = 
𝑇 𝛼𝑇 

= 
𝛼𝑇2 = ( ) 

𝜔1 𝜔2 = 𝜔𝑚 2   𝑤ℎ𝑒𝑟𝑒 𝜔𝑚 
1 

= 
𝑇√𝛼 

 

𝜔𝑚 = √𝜔1𝜔2 

Where 𝜔𝑚 = frequency at which maximum phase lead occurs is the geometric means of the 

two corner frequencies 𝜔1𝑎𝑛𝑑 𝜔2 

𝜔1 = Lower Corner frequency 

𝜔2 = Upper Corner frequency 

From the log magnitude plot 

20 = 
𝑌2 − 0 

 
 

log10 𝜔2 − log10 𝜔1 
 

 

 
We have 𝜔 = 

𝑇 

 

 
𝑎𝑛𝑑 𝜔2 

 
 
= 

1 

𝛼𝑇 

𝜔2 
𝐻𝑒𝑛𝑐𝑒 𝑌2 = 20 log10 

𝜔
 

Therefore , 
1 

𝑌2 = 20 log10 
𝛼

 

 

Effect of Phase Lead Compensation 

1. The velocity constant Kv increases. 

2. The slope of the magnitude plot reduces at the gain crossover frequency so that 

relative stability improves and error decrease due to error is directly proportional to the 

slope. 

3. Phase margin increases. 

4. Response becomes faster. 

1 
1 
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Advantages of Phase Lead Compensation 

Let us discuss some of the advantages of the phase lead compensation- 

1. Due to the presence of phase lead network the speed of the system increases 

because it shifts gain crossover frequency to a higher value. 

2. Due to the presence of phase lead compensation maximum overshoot of the system 

decreases. 

Disadvantages of Phase Lead Compensation 

Some of the disadvantages of the phase lead compensation - 

1. Steady state error is not improved. 

Lag Network 

A system which has one zero and one dominating pole ( the pole which is closer to origin 

that all other poles is known as dominating pole) is known as lag network. If we want to add 

a dominating pole for compensation in control system then, we have to select a lag 

compensation network. The basic requirement of the phase lag network is that all poles and 

zeros of the transfer function of the network must lie in (-)ve real axis interlacing each other 

with a pole located or on the nearest to the origin. Given below is the circuit diagram for the 

phase lag compensation network 

 
 
 
 
 
 
 
 
 
 
 
 
 

. 

 
Transfer Function 

Phase Lag Compensating Network 

Transfer Function = 𝐺 (𝑠) = 
𝑒0(𝑠)

 
𝑐 

[𝑅 +
 1 

] 𝐼( ) 
𝑒𝑖(𝑠) 

𝑒0(𝑠) = 2 𝐶𝑠 𝑠 
 

𝑒𝑖(𝑠) [𝑅 + 𝑅 +
 1 

] 𝐼( ) 
1 2 𝐶𝑠 𝑠 

 

𝑅2𝐶𝑠 + 1 
= 

1 + (𝑅 + 𝑅 
2 )𝐶𝑠 

𝑅2𝐶𝑠 + 1 
𝑅1 + 𝑅2 

1 + ( 𝑅2 
) 𝑅2𝐶𝑠 
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Let τ=R2C and β= 
𝑅1+𝑅2 >1 

𝑅2 



 DEPT. OF EEE 

CONTROL SYSTEMS 

 

 

ωm 

φm 

φ 

𝑖 

1 + 𝑠𝑟 
𝐺(𝑠) = 

1 + 𝛽𝑠𝑟 
− − − − − − − −1 

 
𝐺 (𝑠) = 𝑒0 (𝑠) = 

1 𝑠 + 
1

 
[ 𝑟 ] = 

  

1 𝑠 + 𝑍𝑐 [ ] 
  

𝑐 𝑒𝑖(𝑠) 𝛽 𝑠 +
 1  
𝛽𝑟 

𝛽 𝑠 + 𝑃𝑐 

Where 𝑍 = 
1 

𝑎𝑛𝑑 𝑃 = 
1

 
  

𝑐

The pole zero location of the lag network is as shown in figure below. 

 

Pole Zero Plot of Lag Network 

To obtain sinusoidal transfer function we put s=jω in the equation 1 
𝑒0(jω) 1 + jωτ 

 
If ∅𝑚=⌊(𝑗𝜔)then 

𝐺(jω) = 
𝑒 (jω) 

= 
1 + jωβτ 

 

∅ = ⌊𝐺(jω) = tan−1 𝜔𝑟 − tan−1 𝜔𝛽𝑟 − − − −2 

Since β>1, tan-1ωβτ > tan-1ωτ 

Or φm is negative 

Therefore the output voltage lags the input voltage. Hence the name lag 

Network. The phase lag characteristics as a function of frequency ω is as shown 

below. 

 

ω 
 
 
 
 
 
 
 
 

Taking tan on both sides of equation 
2 

 
𝜔𝑟 − 𝜔𝛽𝑟 

 
Let ψ= tan φ 
Therefore 𝜑 = 
𝜔𝑐−𝜔𝛽𝑐

 
1−𝜔2𝛽𝑐2 

tan ∅ = 
1 − 𝜔2𝛽𝑟2 
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For the phase angle φ to be maximum tan φ= ψ should be maximum 

i.e. 𝑑𝜑 = 0 
𝑑𝜔 
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i.e. 
𝑑  

= 
(1+𝜔2𝛽𝑐2)(𝑐−𝛽𝑐)−(𝜔𝑐−𝜔𝛽𝑐)(2𝜔𝛽𝑐2) 

= 0
 

𝑑𝜔 

after solving, we get 

(1+𝜔2𝛽𝑐2)  

 
𝜔 = 𝜔𝑚 = 

 
 

1 
 

 

𝑟√𝛽 
 

Frequency at which maximum phase lag φm occurs is 
 

𝜔𝑚 =   
1 

𝑐√𝛽 
 

i.e. tan φm 

 therefore 

= 
1−β 

2√β 
 

φ 

 
 
 
 

1−β 

 
 

1+β 
sin m 

= 
1+β 

 

or 𝛽 = 
1−sin ∅𝑚 

1+sin ∅𝑚 

 
 
 
 
 

BODE PLOT OF LAG NETWORK 
 

Sr. No. Factor Corner 

Frequency 

Description 

1 1 
 

1 + 𝑗𝜔𝛽𝑟 

1 
𝜔1 = 

𝛽𝑟
 0db line upto corner frequency ω1 and a line of 

slope equal to -20db/decade 

2 1 + 𝑗𝜔𝑟 
1 

𝜔2 = 
𝑟

 0db line upto corner frequency ω2 and a line of 

slope equal to 20db/decade 
 
 

Phase angle Plot  

∅ = ⌊𝐺(jω) = tan−1 𝜔𝑟 − tan−1 𝜔𝛽𝑟 

1+β 

φm 
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𝑚 

⁄ 

 

 
 

 

𝜔1 
 

𝜔2 
1 

= 
𝛽𝑟2 

1 
= 2 

(𝑟√𝛽) 

 

= 𝜔2 

 
 

𝜔𝑚 = √𝜔1𝜔2 

The frequency at which maximum phase lag occurs is the geometrical mean of the two 

corner frequencies ω1 and ω2 

−20 = 
𝑌2 − 0 

 
 

log10 𝜔2 − log10 𝜔1 
𝜔1 

 
1⁄𝛽𝑐 

i.e. 𝑌2 = 20 log10 [ 1 ] 
𝑐 

𝑌2 = 20 log 
𝜔

 

 
1 

𝑌2 = 20 log10 [
𝛽

] 

 
Effect of Phase Lag Compensation 

1. Gain crossover frequency increases. 

2. Bandwidth decreases. 

3. Phase margin will be increase. 

4. Response will be slower before due to decreasing bandwidth, the rise time and the 

settling time become larger. 

Advantages of Phase Lag Compensation 

Let us discuss some of the advantages of phase lag compensation - 

1. Phase lag network allows low frequencies and high frequencies are attenuated. 

2. Due to the presence of phase lag compensation the steady state accuracy increases. 

Disadvantages of Phase Lag Compensation 

2 
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Some of the disadvantages of the phase lag compensation - 

1. Due to the presence of phase lag compensation the speed of the system decreases. 

 
Phase Lag Lead Network 

 
With single lag or lead compensation may not satisfied design specifications. For an unstable 

uncompensated system, lead compensation provides fast response but does not provide 

enough phase margin whereas lag compensation stabilize the system but does not provide 

enough bandwidth. So we need multiple compensators in cascade. Given below is the circuit 

diagram for the phase lag- lead compensation network. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Lag Lead Compensating Network 

Now let us determine transfer function for the given network and the transfer function can 

be determined by finding the ratio of the output voltage to the input voltage. 

 
 
 
 

(𝑠 +
 1 

)  (𝑠 +
 1 

) 
𝐺 (𝑠) =

 𝑟1 𝑟2 
 𝛼 < 1, 𝛽 > 1 

𝑐 1 1   
(𝑠 + 𝛽𝑟1

) (𝑠 + 𝛼𝑟2
) 

𝐺 (𝑠) = 
(1 + 𝑠𝑟1)(1 + 𝑠𝑟2)⁄𝑟1𝑟2) 

 𝑐 
2 1 1     1  

𝑠  + 𝑠 ( 
𝛽𝑟1 + 𝛼𝑟2

) + 𝛼𝛽𝑟1𝑟2 

https://www.electrical4u.com/voltage-or-electric-potential-difference/
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2 

(1 + 𝑠𝑟1)(1 + 𝑠𝑟2) 
= 𝑟1

 𝑟2   1 − − − − − − − − − − − −1 

 

We have, 

𝑟1𝑟2𝑠2 + 𝑠 (  + 𝛽 ) + 𝛼𝛽 

1 
𝑒0(𝑠) = [𝑅2 + 

𝐶 𝑠
] 𝐼(𝑠) 

𝑅  
  1   

( ) 
1 𝐶1𝑠 1 

( ) 

𝑒  = [ 1 + 𝑅2 + 
𝐶 𝑠

] 𝐼 𝑠 
𝑅1 + 𝐶1𝑠 

[
 𝑅1 + 𝑅 

2 
 

+
 1 

]
 

𝑒𝑖(𝑠) 
= 

𝛽𝑒𝑜(𝑠) 

𝑅1𝐶1𝑠 + 1 2 𝐶2𝑠 
 

 

[𝑅 + 
  1 

] 
2 𝐶2𝑠 

𝑒(𝑠) 𝑅1𝐶1𝑠 + (𝑅2𝐶2𝑠 + 1)(𝑅1𝐶1𝑠 + 1) 
𝑒 (𝑠) 

= 
(𝑅 𝐶 𝑠 + 1)(𝑅 𝐶 𝑠 + 1) 

𝑜 1   1 2  2 

 

𝐺 (𝑠) = 
(𝑅1𝐶1𝑠 + 1)(𝑅2𝐶2𝑠 + 1)  − − − − − 2 

 

𝑐 𝑅1𝑅2𝐶1𝐶2𝑠2 + (𝑅1𝐶1 + 𝑅2𝐶2 + 𝑅1𝐶2) + 1 

 

Comparing equation 1 and 
2 

 

 
𝑟1 

 
𝑟1 = 𝑅1𝐶1 𝑎𝑛𝑑 𝑟2 = 𝑅2𝐶2 

𝑟2 

𝛼 
+ 

𝛽 
= 𝑅1𝐶1 + 𝑅2𝐶2 + 𝑅1𝐶2 

1 
 

 

𝛼𝛽 
= 1 𝑡ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒 𝛼𝛽 = 1 

A single lag- lead network doesnot permit an independent choice of α and β 
(𝑠 +

 1 
) (𝑠 +

 1 
) 1 

𝐺 (𝑠) =   𝑟1 
.
 𝑟2  𝑚𝑒𝑎𝑛𝑠 = 𝛽 𝑎𝑛𝑑 𝛽 > 1 

 

(𝑠 +
 1 

) 
𝛽𝑟1 

(𝑠 + 
  1  

) 𝛼 
𝛽𝑟2 

𝑐 
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Pole Zero Plot Lag Lead Network 

 
BODE PLOT OF LAG-LEAD NETWORK 

 

 
 

 
Advantages of Phase Lag Lead Compensation 

Let us discuss some of the advantages of phase lag- lead compensation- 

1. Due to the presence of phase lag-lead network the speed of the system increases 

because it shifts gain crossover frequency to a higher value. 

2. Due to the presence of phase lag-lead network accuracy is improved. 
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Comparison between Lead Compensator and Lag Compensator 
 

 

LAG Network LEAD Network 

 Improve Steady-state response  Improve Transient response 

 Has low pass filter characteristic  Has high pass filter characteristic 

 Offers unity gain to the low 
frequency signals and a gain of 1/β 
<<1 to high frequency signal 

 Offers unity gain to the low 
frequency signals and a gain of 1/α 
>>1 to high frequency signal 

 Signal to noise ratio is better  Signal to noise ratio is poorer 

 The gain cross over frequency and 
the band width of the system is 
reduced 

 The gain cross over frequency and 
the band width of the system is 
increase. 

 Decreased bandwidth slows 
the response of the system 

 Increased band width makes 
the response faster. 

 It decreases the phase shift.  Increases phase shift. 

 Here pole is closer to origin than 
the zero. 

 Here zero is closer to origin than 
the pole. 
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UNIT - V 
STATE VARIABLE ANALYSIS AND CONCEPTS OF STATE VARIABLES 

 
The state space model of Linear Time-Invariant (LTI) system can be represented as, 

X˙=AX+BU 

Y=CX+DU 

The first and the second equations are known as state equation and output equation respectively. 

Where, 

 X and X˙ are the state vector and the differential state vector respectively. 

 U and Y are input vector and output vector respectively. 

 A is the system matrix. 

 B and C are the input and the output matrices. 

 D is the feed-forward matrix. 

Basic Concepts of State Space Model 

The following basic terminology involved in this chapter. 

State 

It is a group of variables, which summarizes the history of the system in order to predict the 

future values (outputs). 

State Variable 

The number of the state variables required is equal to the number of the storage elements 

present in the system. 

Examples − current flowing through inductor, voltage across capacitor 

State Vector 

It is a vector, which contains the state variables as elements. 

In the earlier chapters, we have discussed two mathematical models of the control systems. 

Those are the differential equation model and the transfer function model. The state space 

model can be obtained from any one of these two mathematical models. Let us now discuss 

these two methods one by one. 

State Space Model from Differential Equation 

Consider the following series of the RLC circuit. It is having an input voltage, vi(t) and the 

current flowing through the circuit is i(t). 
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There are two storage elements (inductor and capacitor) in this circuit. So, the number of 

the state variables is equal to two and these state variables are the current flowing through 

the inductor, i(t) and the voltage across capacitor, vc(t). 

From the circuit, the output voltage, v0(t) is equal to the voltage across capacitor, vc(t). 
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State Space Model from Transfer Function 

Consider the two types of transfer functions based on the type of terms present in the 

numerator. 

 

 Transfer function having constant term in Numerator. 

 Transfer function having polynomial function of‘s’ in Numerator. 

Transfer function having constant term in Numerator 

Consider the following transfer function of a system 
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And u(t)=u 
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Then, 
 

 
Here, D=[0]. 
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Example: 

Find the state space model for the system having transfer function. 

 

 

 
Transfer function having polynomial function of ‘s’ in Numerator 

Consider the following transfer function of a system 
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Rearrange, the above equation as 
 
 

 
and u(t)=u 

Then, the state equation is 
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Transfer Function from State Space Model 

We know the state space model of a Linear Time-Invariant (LTI) system is - 

X˙=AX+BU 

Y=CX+DU 

Apply Laplace Transform on both sides of the state equation. 

sX(s) =AX(s)+BU(s) 

⇒ (sI−A)X(s)=BU(s) 

⇒ X(s) = (sI−A)−1BU(s) 
 

Apply Laplace Transform on both sides of the output equation. 

Y(s) =CX(s) + DU(s) 
 

Substitute, X(s) value in the above equation. 

⇒Y(s) =C ( sI−A)−1BU(s)+DU(s) 

⇒Y(s) = [C (sI−A)−1B+D]U(s) 

⇒Y(s) U(s) = C(sI−A)−1 B+D 
 

The above equation represents the transfer function of the system. So, we can calculate the 

transfer function of the system by using this formula for the system represented in the state 

space model. 

Note − When D=[0], the transfer function will be 
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Example: 

Let us calculate the transfer function of the system represented in the state space model as, 
 

 
Therefore, the transfer function of the system for the given state space model is 

 

 

 
State Transition Matrix and its Properties 

If the system is having initial conditions, then it will produce an output. Since, this output is  

present even in the absence of input, it is called zero input response xZIR(t). Mathematically, 

we can write it as, 
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From the above relation, we can write the state transition matrix ϕ(t) as 
 
 

 
 

So, the zero input response can be obtained by multiplying the state transition 

matrix ϕ(t) with the initial conditions matrix. 

Properties of the state transition matrix 

 If t=0, then state transition matrix will be equal to an Identity matrix. 

 
ϕ(0)=I 

 Inverse of state transition matrix will be same as that of state transition matrix just by 

replacing‘t’ by ‘-t’. 

 
 

 If t=t1+t2 , then the corresponding state transition matrix is equal to the 

multiplication of the two state transition matrices at t=t1t=t1 and t=t2t=t2. 

 

ϕ(t1+t2)=ϕ(t1)ϕ(t2) 

Controllability and Observability 

Let us now discuss controllability and observability of control system one by one. 

Controllability 

A control system is said to be controllable if the initial states of the control system are 

transferred (changed) to some other desired states by a controlled input in finite duration of 

time. 

We can check the controllability of a control system by using Kalman’s test. 
 

 Write the matrix Qc in the following form. 
 

 

 

 Find the determinant of matrix QcQc and if it is not equal to zero, then the control 

system is controllable. 
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Observability 

A control system is said to be observable if it is able to determine the initial states of the 

control system by observing the outputs in finite duration of time. 

We can check the observability of a control system by using Kalman’s test. 
 

 Write the matrix Qo in following form. 
 

 
 Find the determinant of matrix QoQo and if it is not equal to zero, then the control 

system is observable. 

Example: 
 

Let us verify the controllability and observability of a control system which is represented in 

the state space model as, 
 

 
Since the determinant of matrix Qc is not equal to zero, the given control system is 

controllable. 

For n=2, the matrix Qo will be – 



 DEPT. OF EEE 

CONTROL SYSTEMS 

 

 

 

 
 

Since, the determinant of matrix Qo is not equal to zero, the given control 

system is observable. Therefore, the given control system is both 

controllable and observable. 

State Feedback Control Design 

The design techniques described in the preceding lectures are based on the transfer 

function of a system. In this lecture we would discuss the state variable methods of 

designing controllers. 

The advantages of state variable method will be apparent when we design 

controllers for multi input multi output systems. Moreover, transfer function 

methods are applicable only for linear time invariant and initially relaxed 

systems. 

 

1 State Feedback Controller 

 
Consider the state-space model of a SISO system 

x(k + 1) = Ax(k) + Bu(k) y(k) = Cx(k) (1) 

where x(k) ∈ Rn, u(k) and y(k) are scalar. In state feedback design, the states 

are fedback to the input side to place the closed poles at desired locations. 

Regulation Problem: When we want the states to approach zero starting from any arbitrary 

initial state, the design problem is known as regulation where the internal stability of the system, 

with desired transients, is achieved. Control input: 

u(k) = -Kx(k) (2) 

Tracking Problem: When the output has to track a reference signal, the design problem is 

known as tracking problem. Control input: 

u(k) = -Kx(k) + Nr(k) where r(k) is the reference signal. 

First we will discuss designing a state feedback control law using pole placement technique 

for regulation problem. 
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By substituting the control law (2) in the system state model (1), the closed loop 

system 

becomes x(k + 1) = (A - BK)x(k). If K can be designed such that eigenvalues of A - BK are within 

the unit circle then the problem of regulation will be solved. 

The control problem can thus be defined as: Design a state feedback gain matrix K such that the 

control law given by equation (2) places poles of the closed loop system x(k+1) = (A-BK)x(k) in 

desired locations. 

• A necessary and sufficient condition for arbitrary pole placement is that the pair (A, B) 

must be controllable. 

• Since the states are fedback to the input side, we assume that all the states are measurable. 

 

1.1 Designing K by transforming the state model into controllable canonical 

form 

 

The problem is first solved for the controllable canonical form. Let us denote the controllability 

matrix by UC and consider a transformation matrix T as 

T = UCW 
where 

 
 

ai’s are the coefficients of the characteristic polynomial |zI -A| = zn+a1zn-1+· · ·+an-1z +an. 

Define a new state vector x = T ¯x. This will transform the system given by (1) into controllable 

canonical form, as 

 

¯x(k + 1) = A¯¯x(k) + Bu ¯ (k) (3) 

 

You should verify that 

 

 
 

 

 We first find K¯ such that u(k) = -K¯ ¯x(k) places poles in desired locations. Since 
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eigenvalues remain unaffected under similarity transformation, u(k) = -KT ¯ -1x(k) will also place 

the poles of the original system in desired locations. 

 

If poles are placed at z1, z2, ...., zn, the desired characteristic equation can be expressed as: 

(z - z1)(z - z2) . . . (z - zn) = 0 

or, zn + α1zn-1 + . . . + αn-1z + αn = 0 (4) 

Since the pair (A, ¯ B¯) are in controllable-companion form then, we have 

 
 

 

 

 

  

 

 

 

 

 

 

 

 

 

1.2 Designing K by Ackermann’s Formula 
 

Consider the state-space model of a SISO system given by equation (1). The control input is 

 

Desired characteristic Equation: 

 

|zI - A + BK| = |zI - Aˆ| = 0 

or, (z - z1)(z - z2) · · · (z - zn) = 0 

or, zn + α1zn-1 + . . . + αn-1z + αn = 0 

 

Using Cayley-Hamilton Theorem 

Aˆn + α1Aˆn-1 + . . . + αn-1Aˆ + αnI = 0 

u(k) = -Kx(k) 

 
(7) 

Thus the closed loop system will be 

  

x(k + 1) = (A - BK)x(k) = Aˆx(k) 

 
(8) 
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